Abstract

By a result of Paris and Friedman, the collection axiom schema for $\Sigma_{n+1}$ formulas, $B\Sigma_{n+1}$ , is $\Pi_{n+2}$ conservative over $I\Sigma_n$ . We give a new proof-theoretic proof of this theorem, which is based on a reduction of $B\Sigma_n$ to a version of collection rule and a subsequent analysis of this rule via Herbrand's theorem. A generalization of this method allows us to improve known results on reflection principles for $B\Sigma_n$ and to answer some technical questions left open by Sieg [23] and Hajek [9]. We also give a new proof of independence of $B\Sigma_{n+1}$ over $I\Sigma_n$ by a direct recursion-theoretic argument and answer an open problem formulated by Gaifman and Dimitracopoulos [8].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.