Abstract

The transfer-current theorem is a well-known result in probability theory stating that edges in a uniform spanning tree of an undirected graph form a determinantal process with kernel interpretable in terms of flows. Its original derivation due to Burton and Pemantle (1993) is based on a clever induction using comparison of random walks with electrical networks. Several variants of this celebrated result have recently appeared in the literature. In this paper we give an elementary proof of an extension of this theorem when the underlying graph is directed, irreducible and finite. Further, we give a characterization of the corresponding determinantal kernel in terms of flows extending the kernel given by Burton–Pemantle to the non-reversible setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.