Abstract

Let p(n) denote the ordinary partition function. Subbarao conjectured that in every arithmetic progression r (mod t) there are infinitely many integers N ≡ r (mod t) for which p(N) is even, and infinitely many integers M ≡ r (mod t) for which p(M) is odd. In the even case the conjecture was settled by Ken Ono. In this paper we prove the odd part of the conjecture which together with Ono's result implies the full conjecture. We also prove that for every arithmetic progression r (mod t) there are infinitely many integers N ≡ r (mod t) such that p(N) ≢ 0 (mod 3), which settles an open problem posed by Scott Ahlgren and Ken Ono.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.