Abstract

 Assume that \(f\) lies in the class of starlike functions of order \(\alpha\in[0,1)\), that is, which are regular and univalent for \(|z|<1\) and such that
 Re\(\left(\frac{zf'(z)}{f(z)}\right)>\alpha\) for \(|z|<1.\)
 In this paper we show that for each \(\alpha\in[0,1)\), the following sharp inequality holds:
 \(|f(re^{i\theta})|^{-1}\int_{0}^{r}|f'(ue^{i\theta})|\,du\leq\frac{\Gamma(\frac{1}{2})\Gamma(2-\alpha)}{\Gamma(\frac{3}{2}-\alpha)}\) for every \(r<1\) and \(\theta\).
 This settles the conjecture of Hall (1980) positively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.