Abstract
We present a mathematical proof of Einstein's formula for the effective viscosity of a dilute suspension of rigid neutrally buoyant spheres when the spheres are centered on the vertices of a cubic lattice. We keep the size of the container finite in the dilute limit and consider boundary effects. Einstein's formula is recovered as a first-order asymptotic expansion of the effective viscosity in the volume fraction. To rigorously justify this expansion, we obtain an explicit upper and lower bound on the effective viscosity. A lower bound is found using energy methods reminiscent of the work of Keller et al. An upper bound follows by obtaining an explicit estimate for the tractions, the normal component of the stress on the fluid boundary, in terms of the velocity on the fluid boundary. This estimate, in turn, is established using a boundary integral formulation for the Stokes equation. Our proof admits a generalization to other particle shapes and the inclusion of point forces to model self-propelled parti...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.