Abstract

AbstractContinuous first-order logic has found interest among model theorists who wish to extend the classical analysis of “algebraic” structures (such as fields, group, and graphs) to various natural classes of complete metric structures (such as probability algebras, Hilbert spaces, and Banach spaces). With research in continuous first-order logic preoccupied with studying the model theory of this framework, we find a natural question calls for attention. Is there an interesting set of axioms yielding a completeness result?The primary purpose of this article is to show that a certain, interesting set of axioms does indeed yield a completeness result for continuous first-order logic. In particular, we show that in continuous first-order logic a set of formulae is (completely) satisfiable if (and only if) it is consistent. From this result it follows that continuous first-order logic also satisfies anapproximatedform of strong completeness, whereby Σ⊧φ(if and) only if Σ⊢φ∸2−nfor alln < ω. This approximated form of strong completeness asserts that if Σ⊧φ, then proofs from Σ, being finite, can provide arbitrarily better approximations of the truth ofφ.Additionally, we consider a different kind of question traditionally arising in model theory—that of decidability. When is the set of all consequences of a theory (in a countable, recursive language) recursive? Say that a complete theoryTisdecidableif for every sentenceφ, the valueφTis a recursive real, and moreover, uniformly computable fromφ. IfTis incomplete, we say it is decidable if for every sentenceφthe real numberφTois uniformly recursive fromφ, whereφTois the maximal value ofφconsistent withT. As in classical first-order logic, it follows from the completeness theorem of continuous first-order logic that if a complete theory admits a recursive (or even recursively enumerable) axiomatization then it is decidable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.