Abstract

An interesting halogen-substituent effect on the organogelation properties of poly(benzyl ether) dendrons is reported. A new class of poly(benzyl ether) dendrons with halo substituents decorating their periphery was synthesized and fully characterized. A systematic study on the gelation abilities, thermotropic behaviors, aggregated microstructures, and mechanical properties of self-assembled organogels was performed to elucidate the halogen-substituent effects on their organogelation propensity. It was found that the exact halogen substitutions on the periphery of dendrons exert a profound effect on the organogelation propensity, and dendrons Gn -Cl (n=2, 3) and G2 -I proved to be highly efficient organogelators. The cooperation of multiple π-π, dispersive halogen, CH-π, and weak C-H⋅⋅⋅X hydrogen-bonding interactions were found to be the key contributor to forming the self-assembled gels. Dendritic organogels formed from Gn -Cl (n=2, 3) in 1,2-dichloroethane exhibited thixotropic-responsive properties, and such thixotropic organogels are promising materials for future research and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.