Abstract

We investigated the dispersion effect of crystalline silicon nanoparticles (SiNP) on the performance and stability of organic solar cells with the bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PC(61)BM). To improve the dispersion of SiNP in the BHJ films, we attached octanoic acid (OA) to the SiNP surface via esterification reaction and characterized it with Raman spectroscopy and high-resolution transmission electron microscopy. The OA-attached SiNP (SiNP-OA) showed improved dispersion in chlorobenzene without change of optical absorption, ionization potential and crystal nanostructure of SiNP. The device performance was significantly deteriorated upon high loading of SiNP (10 wt %), whereas relatively good performance was maintained without large degradation in the case of SiNP-OA. Compared to the control device (P3HT:PC(61)BM), the device performance was improved by adding 2 wt % SiNP-OA, but it was degraded by adding 2 wt % SiNP. In particular, the device stability (lifetime under short time exposure to 1 sun condition) was improved by adding 2 wt % SiNP-OA even though it became significantly decreased by adding 2 wt % SiNP. This result suggests that the dispersion of nanoparticles greatly affects the device performance and stability (lifetime).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call