Abstract

Adipose tissue-derived stem cells (ADSCs) have shown effectiveness in treating diabetic bladder dysfunction (DBD). In the present study, ADSCs pretreated by defocused low-energy shock wave (DLSW) were first used to achieve better therapeutic effect. ADSCs were treated by DLSW prior to each passage. Secretions of vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were tested. Proliferation ability was examined by staining 5-ethynyl-2-deoxyuridine (EdU) and assessing expressions of proliferating cell nuclear antigen (PCNA) and Ki67. DBD rat model was created and subgrouped via therapeutic options of phosphate-buffered saline, ADSCs, pretreated ADSCs, and ADSCs lysate. Afterward, voiding functions were evaluated, and tissues were examined by histology. Neonatal rats received intraperitoneal injection of EdU. All rats were subgrouped and treated as narrated above. Bladder tissues were stained with EdU, Stro-1, and CD34. Results showed that shocked ADSCs were activated by secreting more VEGF and NGF, by higher EdU-retaining cells ratios, and by higher expressions of PCNA and Ki67 compared with unshocked ADSCs. Shocked ADSCs had the most effective efficacy in treating DBD by secreting the most VEGF and NGF to accelerate regenerations of revascularization and innervation. Migrations of EdU+ Stro-1+ CD34- endogenous stem cells to bladders were enhanced by injecting ADSCs. In conclusion, ADSCs pretreated by DLSW had potent therapeutic effect in treating DBD by secreting VEGF and NGF. Recruitment of endogenous stem cells was considered as an important mechanism in this regenerative process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call