Abstract

Current theories for multiwalled nanotube growth (without metal catalysts) describe the growth of multiwalled nanotubes by the addition of carbon atoms, ions, or small molecules to an open ended nanotube nucleus. In this letter, we describe a method to make carbon nanotubes similar in quality to those found on the cathode deposit of the carbon arc by manipulating the heat treatment of various nongraphitizable carbon precursors. It is proposed that this method of making nanotubes via heat treatments is analogous to a graphitization process, where aromatic/graphitic fragments in disordered carbons assemble into three-dimensional graphitic structures. In addition, we have demonstrated that simple precursors, such as sucrose, can be used as starting materials. These experiments offer new opportunities to understand nanotube growth and could lead to scalable methods to make multiwalled nanotubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call