Abstract

Ni-Mo coatings exhibit desirable corrosion and mechanical properties. Further improvements in their properties can significantly enhance their industrial applications. Reinforcing agents can be incorporated to address this priority. In the present investigation, Ni-Mo alloy and Ni-Mo-Y2O3 nanocomposite coatings were electrodeposited on the copper substrates to study the influences of Y2O3 nanoparticle content on the morphological, microstructural, mechanical, and corrosion properties of the coatings. Results exhibit that there is no change in the phase structure of the Ni-Mo alloy coatings with the incorporation of nanoparticles. Albeit the fact that introduction of the nanoparticles has no influence on the surface morphology of the coatings and all of the electrodeposited coatings show featureless morphology, there is a recognizable decrement in the number of surface-related defects such as pores, voids, and microcracks. Generally, mechanical and corrosion properties of the alloy coatings improve with nanoparticle embedment. Ni-Mo coating electrodeposited from a bath containing 3 g/L Y2O3 (Ni-Mo-3g/L Y2O3) shows the highest microhardness and corrosion resistance primarily originated from its higher Y2O3 content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call