Abstract

ABSTRACT Recent observations demonstrate that the symbiotic X-ray binary (SyXB) IGR J17329−2731 contains a highly magnetized neutron star (NS), which accretes matter through the wind from its giant star companion, and suggest that 4U 1700+24 may also have a highly magnetized NS. Accretion-induced collapse (AIC) from oxygen–neon–magnesium white dwarf (ONeMg WD) + red giant (RG) star binaries is one promising channel to form these SyXBs, while other long standing formation channels have difficulties to produce these SyXBs. By considering non-magnetic and magnetic ONeMg WDs, I investigate the evolution of ONeMg WD + RG binaries with the mesa stellar evolution code for producing SyXBs with non-magnetic or magnetized NSs. In the pre-AIC evolution with magnetic confinement, the mass accumulation efficiency of the accreting WD is increased at low-mass transfer rate compared with the non-magnetic case. The newborn NSs formed via AIC of highly magnetized WDs could inherit the large magnetic field through conservation of magnetic flux, and the systems could have a long age compatible with that of the red giant companions. These young and highly magnetized NSs could accrete matters from the stellar wind of the giant companions to that shine as those observed SyXBs, and could preserve their high magnetic field during this time. The mesa calculation results show that the initial parameter (initial RG mass and orbital period) space for the AIC with magnetic confinement to form SyXBs with highly magnetized NSs shifts to be lower and narrower compared with that of the no magnetic confinement case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.