Abstract
Explicit exponentially-fitted two-derivative Runge–Kutta–Nyström method with single f-function and multiple third derivatives is proposed for solving special type of second-order ordinary differential equations with exponential solutions. B-series and rooted tree theory for the proposed method are developed for the derivation of order conditions. Then, we build frequency-dependent coefficients for the proposed method by integrating the second-order initial value problem exactly with solution in the linear composition of set functions eλt and e−λt with λ∈R. An exponentially-fitted two-derivative Runge–Kutta–Nyström method with three stages fifth order is derived. Linear stability and stability region of the proposed method are analyzed. The numerical tests show that the proposed method is more effective than other existing methods with similar algebraic order in the integration of special type of second-order ordinary differential equations with exponential solutions. Also, the proposed method is used to solve a famous application problem, Verhulst logistic growth model and the result shows the proposed method still works effectively for solving this model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.