Abstract

For solid-state electrolyte in lithium-ion batteries, high crystal boundary impedance leads to tough electrolyte-electrode interfacial issues. Here, we introduce garnet Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and succinonitrile (SN) into thermal polyurethane (TPU) to fabricate a composite solid-state electrolyte (TPU/LLZTO/SN), achieving high ionic conductivity of 6.452 × 10−4 S cm−1. The TPU polymer with specific soft and hard segments allows lithium ions fast transport and holds good mechanical strength as the electrolyte matrix. The ionic conductor LLZTO further improves the ionic conductivity and mechanical property of the composite electrolyte membrane. Additional SN supplies the electrolyte’ wide electrochemical stabilization window, and enhances the metallic lithium compatibility of the TPU matrix. As a result, the as prepared TPU/LLZTO/SN electrolyte presents high lithium ions transference number of 0.64, and also good mechanical property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call