Abstract

A judicious change in the selected transition used for circular polarization excitation will overcome the low oscillator strength limitation of the currently allowed magnetic-dipole (5)D1 <-- (7)F2 (Eu(III)) transition chosen for circularly polarized luminescence (CPL) measurement. The proposed allowed magnetic-dipole (5)D1 <-- (7)F0 (Eu(III)) transition will facilitate the detection of CPL from the Eu(III) systems of interest. CPL on the acetonitrile solution of the chiral tris complex of Eu(III) with (R,R)-N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide ([Eu((R,R)-1)3](3+)), recently suggested as an effective and reliable CPL calibrating agent, confirms the feasibility of the proposed experimental procedure. A comparable CPL activity exhibited by the acetonitrile solution of [Eu((R,R)-1)3](3+) following direct excitation in the spectral range of the (5)D1 <-- (7)F0 transition and upon indirect excitation through the ligand absorption bands (lambda(exc) = 308 nm) was observed. This confirms that the recommended magnetic-dipole allowed absorption transition, (5)D1 <-- (7)F0, is the transition to be considered in the measurement of CPL. This work provides critical direction for the continued instrumental improvements that can be done for developing CPL into a biomolecular structural probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call