Abstract
Abstract (Ba 2− x Eu x )ZnSi 2 O 7 blue–green phosphors were prepared by a sol–gel (SG) process. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The properties of the resulting phosphors were characterized by photoluminescence (PL) spectroscopy. The shape and size of the sample were observed by transmission electron microscopy (TEM). The results of TG and XRD indicate that the (Ba 2− x Eu x )ZnSi 2 O 7 phosphors crystallize completely at 900 °C. The emission spectrum shows a single band centered at 500 nm, which corresponds to the 4 f 6 5 d 1 → 4 f 7 transition of Eu 2+ . The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu 2+ in Ba 2 ZnSi 2 O 7 :Eu 2+ phosphor is about 0.10 mol. The value of the critical transfer distance is calculated as 15.1 A. The corresponding concentration quenching mechanism is verified to be the electric multipole–multipole interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.