Abstract

We report a Mg alloy Mg-2.2Nd-0.1Zn-0.4Zr (wt.%, denoted as JDBM-2) showing great potential in clinical vascular stent application by integrating the advantages of traditional medical stainless steel and polymer. This alloy exhibits high yield strength and elongation of 276 ± 6 MPa and 34.3 ± 3.4% respectively. The JDBM-2 with a stable degradation surface results in a highly homogeneous degradation mechanism and long-term structural and mechanical durability. In vitro cytotoxicity test of the Mg extract via human vascular endothelial cells (HUVECs) indicates that the corrosion products are well tolerated by the tested cells and potentially negligible toxic effect on arterial vessel walls. This alloy also exhibits compromised foreign body response (FBR) determined by human peripheral blood derived macrophage adhesion, foreign body giant cell (FBGC) formation and inflammatory cytokine and chemokine secretion. Finally, vascular stents manufactured from the JDBM-2 were implanted into rabbits for long-term evaluation. The results confirm excellent tissue compatibility and up to 6-month structural and mechanical integrity of the stent in vivo. Thus, the JDBM-2 stent with up to 6-month structural and mechanical integrity and excellent tissue compatibility represents a major breakthrough in this field and a promising alternative to traditional medical stainless steel and polymer for the clinical application.

Highlights

  • Samples T4 Once extrusion Double extrusion for cardiovascular intervention[20,21]

  • The cardiovascular stent manufactured by this Mg alloy with up to 6-month structural and mechanical integrity and excellent tissue compatibility achieved through controllable homogeneous degradation mechanism represents a major advancement in the evolution of stent and opens opportunities to improve the long-term clinical outcome of percutaneous coronary intervention

  • The improvement in elongation of JDBM-2 after double extrusion could be attributed to the activated non-basal dislocations in fine-grain Mg alloy with a better grain boundary compatibility effect[25]

Read more

Summary

Introduction

Samples T4 Once extrusion Double extrusion for cardiovascular intervention[20,21]. More importantly, Mg is one of the trace elements existing in the human body, the corrosion product of Mg alloy generated by the electrochemical reaction Mg + 2H2O → Mg (OH)2 + H2 can be absorbed or excreted by the surrounding tissues and metabolic system[22]. Despite recent advances in the improvement of corrosion properties via a variety of technical methods, Mg alloys for the clinical application of biodegradable cardiovascular stent is still challenged by the short-term support of less than 6-month durability due to the rapid galvanic-corrosion, which is undesirable to cause complete failure of the medical device before the tissue has healed completely. We report a promising Mg alloy JDBM-2 with great potential by integrating the advantages of medical stainless steel and biodegradable polymer for vascular stent application. The cardiovascular stent manufactured by this Mg alloy with up to 6-month structural and mechanical integrity and excellent tissue compatibility achieved through controllable homogeneous degradation mechanism represents a major advancement in the evolution of stent and opens opportunities to improve the long-term clinical outcome of percutaneous coronary intervention

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.