Abstract

Exosomes as cell-derived vesicles are promising biomarkers for noninvasive and early detection of different types of cancer. However, a straightforward and cost-effective technique for isolation of exosomes in routine clinical settings is still challenging. Herein, we present for the first time, a novel coaxial nanofiber structure for the exosome isolation from body fluids with high efficiency. Coaxial nanofiber structure is composed of polycaprolactone polymer as core and a thin layer of gelatin (below 10nm) as the shell. The thermo-sensitive thin layer of gelatin can efficiently release the captured exosome by specific antibody namely, CD63, whenever its temperature raised to the physiological temperature of 37°C. Moreover, the thin layer of gelatin induces less contamination to separated exosomes. The interconnected micro-pores of electrospun nanofibrous membrane insurances large surface area for immobilization of specific antibody for efficient exosome capturing. The efficacy of exosome isolation is determined by direct ELISA and compared with ultracentrifugation technique. For the exosome isolation, it was observed that over 87% of exosomes existed in the culture medium can be effectively isolated by coaxial electrospun nanofibers with the average thickness of 50µm. Therefore, this promising technique can be substituted for the traditional techniques for exosome isolation which are mostly suffering from low efficacy, high cost, and troublesome process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call