Abstract

The large temperature drift caused by variation of environmental temperature is the main factor affecting the performance of fiber optical gyroscope (FOG). Considering the fact that the temperature drift is a group of multi-variable nonlinear time series related with temperature, a new method named projection pursuit learning network (PPLN) is employed in this paper to model the temperature drift of FOG. The PPLN integrates the advantages of artificial neural network (ANN) and projection pursuit algorithm (PP), and is capable of providing less network neurons and good robustness. Numerical results from measured temperature drift data of FOG verify the effectiveness of the proposed method, and good predication of independent tested data is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.