Abstract
The paper presents a unified approach to the dynamic analysis of mechanical systems subject to (ideal) holonomic and/or nonholonomic constraints. The approach is based on the projection of the initial (constraint reaction-containing) dynamical equations into the orthogonal and tangent subspaces; the orthogonal subspace which is spanned by the constraint vectors, and the tangent subspace which complements the orthogonal subspace in the system’s configuration space. The tangential projection gives the reaction-free (or purely kinetic) equations of motion, whereas the orthogonal projection determines the constraint reactions. Simplifications due to the use of independent variables are indicated, and examples illustrating the concepts are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.