Abstract

The aim of the frequent subgraph mining task is to find frequently occurring subgraphs in a large graph database. However, this task is a thriving challenge, as graph and subgraph isomorphisms play a key role throughout the computations. Since subgraph isomorphism testing is a hard problem, subgraph miners are exponential in runtime. To alleviate the complexity issue, we propose to introduce a bias in the projection operator and instead of using the costly subgraph isomorphism projection, one can use a polynomial projection having a semantically-valid structural interpretation. This paper presents a new projection operator for graphs named AC-projection, which exhibits nice theoretical complexity properties. We study the size of the search space as well as some practical properties of the projection operator. We also introduce a novel breadth-first algorithm for frequent AC-reduced subgraphs mining. Then, we prove experimentally that we can achieve an important performance gain (polynomial complexity projection) without or with non-significant loss of discovered patterns in terms of quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.