Abstract

Scalability is a main and urgent problem in evolvable hardware (EHW) field. For the design of large circuits, an EHW method with a decomposition strategy is able to successfully find a solution, but requires a large complexity and evolution time. This study aims to optimize the decomposition on large-scale circuits so that it provides a solution for the EHW method to scalability and improves the efficiency. This paper proposes a projection-based decomposition (PD), together with Cartesian genetic programming (CGP) as an EHW system namely PD-CGP, to design relatively large circuits. PD gradually decomposes a Boolean function by adaptively projecting it onto the property of variables, which makes the complexity and number of sub-logic blocks minimized. CGP employs an evolutionary strategy to search for the simple and compact solutions of these sub-blocks. The benchmark circuits from the MCNC library, $$n$$n-parity circuits, and arithmetic circuits are used in the experiment to prove the ability of PD-CGP in solving scalability and efficiency. The results illustrate that PD-CGP is superior to 3SD-ES in evolving large circuits in terms of complexity reduction. PD-CGP also outperforms GDD+GA in evolving relatively large arithmetic circuits. Additionally, PD-CGP successfully evolves larger $$n$$n-even-parity and arithmetic circuits, which have not done by other approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call