Abstract

The Weber problem consists of finding a point in Rn that minimizes the weighted sum of distances from m points in Rn that are not collinear. An application that motivated this problem is the optimal location of facilities in the 2-dimensional case. A classical method to solve the Weber problem, proposed by Weiszfeld in 1937, is based on a fixed-point iteration.In this work we generalize the Weber location problem considering box constraints. We propose a fixed-point iteration with projections on the constraints and demonstrate descending properties. It is also proved that the limit of the sequence generated by the method is a feasible point and satisfies the KKT optimality conditions. Numerical experiments are presented to validate the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.