Abstract
Symptomatic intervertebral disc (IVD) degeneration (IDD) is a major socioeconomic burden and is characterized by inflammation and tissue degradation. Due to the lack of causative therapies, there is an urgent need for innovative experimental organ culture models to study the mechanisms involved in the progression of the disease, find therapeutic targets, and reduce the need for animal models. We here present a novel, three-dimensional organ culture model protocol mimicking the proinflammatory and catabolic microenvironment, which is present during IDD. Initially, bovine caudal IVDs were dissected, cleaned, and cultured in the tissue culture medium. Dynamic physiologic or pathologic loading was applied in a custom-made bioreactor for 2 hours per day. IVDs were assigned to a control group (high glucose medium, physiological loading, phosphate-buffered saline injection) and a pathological group (low glucose medium, pathological loading, tumor necrosis factor-alpha injection) for four days. Gene expression analysis from collected nucleus pulposus cells of the IVDs and enzyme-linked immunosorbent assay of the conditioned organ culture media was performed. Our data revealed a higher expression of inflammatory markers and reduced disc heights after loading in the pathological group compared to the control group. This protocol is reliable to simulate IVD inflammation and degeneration and can be further expanded to broaden its application scope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.