Abstract

The growing demands of large-capacity flash-based storages have facilitated the downscaling process of NAND flash memory. However, the downscaling of traditional planar floating-gate flash memory faces several challenges. Therefore, new NAND flash technologies have been explored to provide larger capacity with low cost. Among these new technologies, the 3-D charge-trap flash is regarded as one of the most promising candidates. The 3-D charge-trap flash is composed of several gate-stack layers and vertical cylindrical channels to provide high-density and low cell-to-cell interference. Owing to the cylindrical geometry of vertical channels, the access performance of each page in one block is distinctive, and this situation is exacerbated in the 3-D charge-trap flash with the fast-growing number of gate-stack layers. In this paper, a progressive performance boosting strategy is proposed to boost the performance of 3-D charge-trap flash by utilizing its asymmetric page access speed feature. A series of experiments was conducted to demonstrate the capability of the proposed strategy on improving the access performance of 3-D charge-trap flash.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.