Abstract

In this paper, the potential-stream function method, a very efficient computational method for the inverse design of two-dimensional compressor blades in transonic flow conditions is presented. By investigating the influence of the prescribed velocity coefficient distribution on the blade surface, it is found that the non-physical solution usually obtained by the general inverse method could be effectively avoided by adjusting the local velocity coefficient distribution. The objective functions were set-up for the leading edge, trailing edge closing problems, and outlet flow angle, respectively, for the numerical optimization on the basis of sequential quadratic programming. The optimum blade profiles with satisfactory performance and reasonable geometric shape can be obtained by this improved optimization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.