Abstract

Due to the harshness and unpredictability of the tidal site environment, the damage induced by an accidental impact should be considered in the certification of composite cylindrical structures intended to be used in the design of the composite MJM tidal turbine concept. The first part of this paper deals with the effect of different failure criteria based on quadratic stress functions on the low-velocity impact response of thick filament wound glass/epoxy cylindrical structures. A user-defined material model (VUMAT) applied to three-dimensional solid elements was implemented into the finite element software Abaqus-Explicit to explore the effect of failure criteria on the predicted dynamic response with intralaminar damage. The investigated failure criteria include the two-dimensional Hashin criteria presented by Hashin in 1973 and extended to the three-dimensional case by including analytically the out-of-plane stress terms (criteria denoted “Hashin 3D”), the three-dimensional Hashin criteria described by Hashin in 1980 (criteria denoted “Hashin 3D 1980”), the Puck matrix transverse criterion coupled to Hashin criteria (criteria denoted “Hashin-Puck”) and Chang-Chang criteria (criteria denoted “Chang & Chang 1987”). The intralaminar damage model includes damage onset based on quadratic failure criteria, damage evolution, and element deletion from the solid mesh. FEA analyses are carried out with different low-level impact energies. The numerical results show different impact responses as well as the damage characteristics particularly the matrix cracking through the thickness. In the second part the bilinear cohesive zone model (CZM) is employed for modelling the interlaminar damage. The combination of the intralaminar damage model with the interlaminar model is applied using an uncoupled methodology. By comparison with the experimental force–time curves, interface properties used in the cohesive model have been estimated numerically using a reverse methodology and a baseline FEA model. The modelling approach has proven to be capable of reproducing experimental results with good accuracy. The modelling outcomes and predicted damage are therefore intended to be applied in the design loop and development of the MJM tidal turbine prototype where thick filament wound glass/epoxy cylinders are subjected to low-velocity stones impact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.