Abstract

Matrix cracking-induced delamination in composite laminates is qualitatively and quantitatively investigated in a finite element framework. The phantom node method is extended to incorporate breakable interfaces at transverse matrix crack tips. New user-defined element types in Abaqus improve the numerical stability in a geometrically nonlinear analysis. The new formulation allows for accurate prediction of matrix crack density and stiffness reduction in a number of composite laminates. Furthermore, the advanced phantom node method is able to simulate progressive matrix cracking-induced delamination with good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.