Abstract

A programmable microcomputer-based sonar echo processor has been developed and field tested to process echo data in real time. The device was designed for use in fisheries acoustics and to analyze echoes from the sea floor. The instrument simultaneously performs the functions "echo integration" and "echo peak detection'' on the sonar signal. The "echo integration" circuitry measures the relative acoustic energy of the echo while the "echo peak detection'' electronics measure the probability density function (PDF) of the peak of the echo envelope. Each process is gated so the echoes may be processed in many short time intervals. In fisheries applications, estimates can be made of fish density (fish per unit volume), average backscattering cross section, and a combination of fish size and behavior. When using the device to analyze bottom echoes, it is possible to measure both the returned energy from the bottom sediment interfaces and the microrelief characteristics. The durability, flexibility, computer link, and floppy-disk data-storage features of the system are discussed. Data are presented of the processed echoes from biological organisms and the ocean bottom from a recent research cruise on the Atlantic Ocean near Cape Hatteras, NC. The biological results illustrated the organisms to be clearly divided into two separate spatial distributions-an observation not obvious from a standard echogram which was simultaneously used. The results from the bottom showed both 1) the difference in sub-bottom structure between two locations and 2) changes in microrelief of the water-bottom interface between another pair of locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.