Abstract

Near breakeven conditions have been attained in the JET tokamak [Fusion Technol. 11, 13 (1987)], with beryllium as the first-wall material. A fusion triple product (nDτETi) of 8–9×1020 m−3 sec keV has been reached (within a factor of 8 of that required in a fusion reactor). However, this has only been achieved transiently. At high heating powers, an influx of impurities still limits the achievement of better performance and steady-state operation. In parallel, an improved quantitative understanding of fusion plasmas has emerged from the development of a particular plasma model. Good quantitative agreement is obtained between the model and JET data. The main predictions are also consistent with statistical scaling laws. With such a model, a predictive capability begins to emerge to define the parameters and operating conditions of a DEMO, including impurity levels. Present experimental results and model predictions suggest that impurity dilution is a major threat to a reactor. A divertor concept must be developed further to ensure impurity control before a DEMO can be constructed. A New Phase for JET is planned in which an axisymmetric pumped divertor configuration will be used to address the problems of impurity control, plasma fueling, and helium ash exhaust. It should demonstrate a concept of impurity control and the operational domain for such a device. A single Next Step facility (ITER) is a high risk strategy in terms of physics, technology, and management, since it does not provide a sufficiently sound foundation for a DEMO. A Next Step program is proposed, which could comprise several complementary facilities, each optimized with respect to specific clear objectives. In a minimum program, there could be two Next Step tokamaks, and a Materials Test Facility. Such a program would allow division of effort and sharing of risk across the various scientific and technical problems, permit cross comparison, and ensure continuity of results. It could even be accomplished without a significant increase in world funding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call