Abstract

We have developed a program-disturb model to characterize the channel potential of the program-inhibited string during NAND flash cell programming. This model includes cell-to-cell capacitances from 3-D technology computer-aided design simulation and leakage currents associated with the boosted channel. We studied the program-disturb characteristics of sub-30-nm NAND cells using a delayed programming pulse method. The simulation results agree with the experimental data very well and show quantitative impacts of junction leakage current, band-to-band tunneling (BTBT) current, Fowler-Nordheim tunneling current, and channel capacitance on the program disturb. We further discuss the cell-scaling trend and identify that the BTBT current can be a dominant mechanism for the program disturb of sub-20-nm NAND cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.