Abstract

Complex cellular signaling network in the tumor microenvironment (TME) could serve as an indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes (TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the RS model. Univariate and multivariate CRA showed that the RS could independently predict patients' prognosis. A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also validated the reliability of the model according to the area under the receiver operating characteristic (ROC) curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. This study provided TRGs to help classify patients with HCC and predict their prognoses, contributing to personalized treatments for patients with HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call