Abstract

BackgroundShear wave elastography can measure shear wave speed in muscles, which is used to estimate shear modulus. Normative values and standardized methodology are needed for children. Study aims were to: estimate shear modulus behavior of lower limb muscles of typically developing children; and establish a profile of reference data and recommendations for clinical assessment. MethodsForty-one typically developing children (mean 9.7 y, SD 1.9 y) completed assessment of resting shear modulus of rectus femoris, biceps femoris, gastrocnemius lateralis and tibialis anterior at short and long lengths using shear wave elastography. Effects of muscle length, age, sex and BMI were examined. Then, our data and data from a scoping review for typical individuals were collated according to Net-Longitudinal Tension Angle (net proximal and distal joint angles). FindingsShear modulus was: higher at long versus short muscle lengths for all four muscles (P < 0.001); correlated with increasing age for tibialis anterior at short (r = 0.39) and long lengths (r = 0.42) (both P = 0.01); but not related to sex or BMI. Shear modulus: tended to increase with increasing Net-Longitudinal Tension Angle for 18 lower limb muscles; and was higher for children than adults for some muscles (e.g. tibialis anterior and gastrocnemius lateralis, both P < 0.001). InterpretationIn typically developing children, shear modulus of lower limb muscles increases with increasing Net-Longitudinal Tension Angle. Recommendations enable comparison of values across different test positions and populations. Some relation between shear modulus and age was identified, but more research is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.