Abstract

It is well known that the normal mixture with unequal variance has unbounded likelihood and thus the corresponding global maximum likelihood estimator (MLE) is undefined. One of the commonly used solutions is to put a constraint on the parameter space so that the likelihood is bounded and then one can run the EM algorithm on this constrained parameter space to find the constrained global MLE. However, choosing the constraint parameter is a difficult issue and in many cases different choices may give different constrained global MLE. In this article, we propose a profile log likelihood method and a graphical way to find the maximum interior mode. Based on our proposed method, we can also see how the constraint parameter, used in the constrained EM algorithm, affects the constrained global MLE. Using two simulation examples and a real data application, we demonstrate the success of our new method in solving the unboundness of the mixture likelihood and locating the maximum interior mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.