Abstract

In the existing epoch, the cloud-IoT integrated distributive computing is earning very high attractiveness because of its immense characteristics which can be divided into two categories namely essential and common characteristics. The essential characteristics of cloud-IoT computing are demand dependent like broad network access, self-service, resource pooling, and speedy elastic nature. The common characteristics of cloud-IoT computing are homogeneity, massive scale, virtualization, resilient computing, low cost software availability, service orientation, geographic independent computation, and advanced safety availability. The cloud-IoT dependent internetworked distributive computation is internet based computation environment in which infrastructure, application software, and various similar / dissimilar platforms are accessible in the cloud and the end users (businessman, developers) have the right to use it as the client. Cloud is a step from Utility Computing and several industries / companies are frequently using cloud based systems in their day-to-day work. Therefore, safety issues and challenges of cloud computing cannot be avoided in the current era. Hence, the researchers must develop high order authentication protocols for preventing the safety threats of cloud based data communication systems. The proposed CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) based management of cloud-IoT integrated information is a two phase authenticated encoding (AE) mechanism. The first phase is worn for executing privacy computations, and the second phase is used for computing validation and truthfulness. Here, both the cycles use same encoding technique. It is well known to us that the CCM/CCMP is an amalgamation of two forms namely AES counter form and CBC- MAC (cipher-block-chain message authentication code) protocol form. The counter form is worn to carry out encoding which guarantees data privacy whereas CBCMAC is worn to attain data legitimacy and reliability. In this investigation work the author has investigated and critically analyzed the CCMP dependent safe Cloud-IoT integrated distributive mechanism for data / information management. The proposed approach further improves the overall security and performance of cloud-IoT integrated computing networks. Further, the author has solved the challenges of cloud-IoT computing by studying and analyzing major cloud-IoT computing safety concerns, and safety threats which are expected in future generation cloud computing systems. In this paper, the author has proposed CCMP & CBC-HMAC (Cipher-Block-Chain key Hash-MessageAuthentication-Code) encoding protocol can be efficiently used for providing information safety and preventing various attacks when the data is being transferred between the Cloud and a local network. The prevention mechanism for unauthorized access of data within the cloud is also presented whose performance is highly satisfactory. A secure and flexible framework to support self-organize and self register of consumer’s information in to the cloud network is designed and tested. The testing results of proposed analysis provides us very clear evidences that the PRF of CCMP is a superior and secure in contrast to that of CBC-HMAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call