Abstract

A process simplification scheme for fabricating CMOS poly-Si thin-film transistors (TFTs) has been proposed, which employs large-angle-tilt-implantation of dopant through a gate sidewall spacer (LATITS). By this LATITS scheme, a lightly doped drain region under the oxide spacer is formed by low-dose tilt implantation of phosphorus (or boron) dopant through the spacer, and then the n+-source/drain (n+-S/D) (or p+-S/D) region is formed via using the same photo-mask layer during CMOS integration. For both n-TFT and p-TFT devices, as compared to the sample with conventional single n+-S/D (or p+-S/D) structure, the LATITS scheme can cause an obviously smaller leakage current, due to more gradual dopant distribution and thus smaller electric field. In addition, the resultant on-state currents only show slight degradation for the LATITS scheme. As a result, by the LATITS scheme, CMOS poly-Si TFT devices with an on/off current ratio well above 8 orders may be achieved without needing extra photo-mask layers during CMOS integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call