Abstract

BackgroundSubstituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes.ResultsWe have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC) and 3-methylcatechol (3-MC) at pilot scale. Amongst the screened strains, two strains viz. Pseudomonas putida strain (F1) and recombinant Escherichia coli expression clone (pDTG602) harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to ~90-95% with time and high yields of 3-NC (10 mM) and 3-MC (12 mM) were obtained.ConclusionThe biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms P. putida (F1) and recombinant E. coli expression clone (pDTG602) may be useful for industrial application.

Highlights

  • Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products

  • Precursors are essential starting material for the production of a large number of fine chemicals, antibiotics and flavor compounds. Catechols and their derivatives have wide industrial applications as they serve as precursors for large-scale synthesis of industrial and agricultural products [1,2]

  • A total of ~50% catechols are used in the synthesis of pesticides such as carbofuran, propouxur etc

Read more

Summary

Introduction

Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Precursors are essential starting material for the production of a large number of fine chemicals, antibiotics and flavor compounds. Catechols and their derivatives have wide industrial applications as they serve as precursors for large-scale synthesis of industrial and agricultural products [1,2]. Some catechols and their derivatives are used in manufacturing of synthetic flavors such as vanillin and fragrance [3]. Chemical synthesis of catechols results a mixture of both 3and 4- substituted catechols thereby increasing the cost of downstream processing enormously [9,10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call