Abstract

The objective of this research was to develop a process for the design and manufacture of mission- and aircraft-specific propellers for small unmanned aerial vehicles. This objective was met by creating a computer program to design a propeller that meets user-defined aircraft performance requirements within the limitations of the motor, material, and manufacturing methods. The use of additive manufacturing (3D printing) in making flightworthy propellers was explored through material testing and by manufacturing trials. By testing the propellers in simulated flight conditions, it was found that the propellers generated nearly the expected design thrust, but a series of manufacturing and instrumentation issues prevented a complete evaluation of their performance. Testing was sufficient to demonstrate the feasibility of flightworthy propellers produced through additive manufacturing. Future work for the further development of the design program was also outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.