Abstract

Learning goal (LG) identification can greatly inform curriculum, teaching, and evaluation practices. The complex laboratory course setting, however, presents unique obstacles in developing appropriate LGs. For example, in addition to the large quantity and variety of content supported in the general chemistry laboratory program, the interests of faculty members from various chemistry subdisciplines and the service goals of such a course should be addressed. To optimize the instructional impact of limited laboratory contact time, achieve learning gains in basic and transferable (i.e., valuable in other sciences) laboratory learning content, and establish departmental consensus, a model was created for LG and assessment development that was inspired by interdisciplinary science laboratory LGs implemented at Rice University. These newly developed processes and materials were used to enhance the introductory chemistry laboratory curriculum at the University of British Columbia, involving a large (>1700 studen...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call