Abstract
The process-based xylem formation model is an important tool for understanding the radial growth process of trees and its influencing factors. While numerous xylogenesis models for conifers have been developed, there is a lack of models available for non-coniferous trees. In this study, we present a process-based model designed for xylem formation and ring growth in broad-leaved trees, which we call the Broad-leaved Tree-Ring (BTR) model. Climate factors, including day length, air temperature, soil moisture, and vapor pressure deficit, drive daily xylem cell production (fibers and vessels) and growth (enlargement, wall deposition). The model calculates the total cell area in the simulated zone to determine the annual ring width. The results demonstrate that the BTR model can basically simulate inter-annual variation in ring width and intra-annual changes in vessel and fiber cell formation in Fraxinus mandshurica (ring-porous) and Betula platyphylla (diffuse-porous). The BTR model is a potential tool for understanding how different trees form wood and how climate change influences this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.