Abstract

A dynamic model of plutonium behaviour in the marine environment has been developed, representing the oxidation state distribution and partitioning of plutonium between the soluble, colloidal, suspended particulate and seabed sediment fractions. With simple re-parameterisation, this model can also be applied to 137Cs. The model, which is calibrated and validated against field data, has been used to predict concentrations of Pu(α) and 137Cs in both water and seabed sediments from the vicinity of the Sellafield Ltd. reprocessing plant in Cumbria, UK. The model predicts that sediment reworking and transport are the key environmental processes as the Sellafield Pu(α) and 137Cs discharge continues to decline. Inventory calculations generated by the model are consistent with previous estimations. For a hypothetical post-discharge scenario, the concentrations of these radionuclides in both seawater and surface sediments are predicted to decrease sharply, concurrent with a downward vertical migration of the activity retained in sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call