Abstract

To engineer reliable real-time systems, it is desirable to detect timing anomalies early in the development process. However, there is little work addressing the problem of accurately predicting timing properties of real-time systems before implementations are developed. This paper describes an approach to the specification and schedulability analysis of real-time systems based on the timed process algebra ACSR-VP, which is an extension of ACSR with value-passing communication and dynamic priorities. Combined with the existing features of ACSR for representing time, synchronization and resource requirements, ACSR-VP is capable of specifying a variety of real-time systems with different scheduling disciplines in a modular fashion. Moreover, we can use VERSA, a toolkit we have developed for ACSR, to perform schedulability analysis on real-time systems specified in ACSR-VP automatically by checking for a certain bisimulation relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.