Abstract

The penetration of the valence electron orbitals of the alkali metals into their inner shells and its effect on the energy levels can be considered through two methods that take into account modifications of the hydrogen formula (one-electron system). One of them considers the quantum defect, modifying the quantum number n; the other considers the effective nuclear charge Z* replacing the nuclear charge Z. The method using the quantum defect is widely used because this quantity is practically constant for a given angular momentum quantum number l. However, the method using effective nuclear charge is more realistic because it explains many atomic and molecular properties - but the effective nuclear charge depends on l as well as on the principal quantum number n. This article describes a relatively simple graphical procedure to calculate the effective nuclear charges experienced by the sodium valence electron from its atomic spectrum. A relation of Z* with n for a given l is obtained and the Z* values for...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.