Abstract

This work deals with the simulation of the fatigue crack growth (FCG) in bonded joints. In particular a cohesive damage model is implemented in the commercial software Abaqus, in order to take into account for the damage produced by fatigue loading. The crack growth rate is evaluated with different Paris-like power laws expressed in terms of strain energy release rate. The crack growth rate is then translated into a variation of the damage distribution over the cohesive zone setting an equivalence between the increment of crack length and the increment of damage. The model takes also into account mixed mode I/II conditions. In this work the validity of the model is tested by comparison with theoretical trends for conditions of pure mode I, pure mode II and mixed mode loading. In the case of mixed mode conditions, different models are implemented for the crack growth rate computation. The results of the model are in very good agreement with the expected trends, therefore the model is adequate to simulate the fatigue crack growth behaviour of bonded joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.