Abstract

The most characteristic narrow-band transducer structure for high-power ultrasonic applications is the well known piezoelectric sandwich which is reminiscent of the Langevin transducer. Such structure is generally used jointly with other components in the construction of industrial high-power transducers. One of the main objectives in the design and construction of such high-power transducers is to minimize energy losses. To that purpose the selection of the piezoelectric ceramic rings forming the sandwich requires clear and specific criteria. This paper deals with a numerical and experimental procedure for the accurate selection of the piezoelectric rings constituting high-power transducers, based on the analysis of the mechanical Q, the frequency and the resonance curve. The procedure was experimentally checked by constructing and characterizing several transducer structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.