Abstract
The Solar Mass Ejection Imager (SMEI) instrument consists of three CCD cameras with individual fields of view of 60° × 3° degrees that combined sweep a 160° arc of sky. SMEI covers the entire sky in one spacecraft orbit of 102 minutes. Individual 4-s exposures from each orbit are assembled into full-sky maps. The primary objective in the SMEI data reduction is to isolate the Thomson-scattering signal across the sky from free electrons in the solar wind. One of the steps needed to achieve the required photometric precision is the individual fitting and removal of stars brighter than 6th magnitude from the full-sky maps. The point-spread function of the SMEI optics has several unusual properties. It has a full width of about one degree, is asymmetric, and varies in width depending on where in the field of view the image is formed. Moreover, the orientation of the PSF on the sidereal sky rotates over 360 degree over the course of a year. We describe the procedure used to fit and subtract individual stars from the SMEI full-sky maps. A by-product of this procedure are time series at the orbital time resolution for stars brighter than 6th magnitude. These results are used by Buffington et al. (2007) to calibrate the SMEI instrument against the LASCO C3 coronagraph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.