Abstract

In this paper, the damage potential of an earthquake ground motion is evaluated in terms of the total power of the acceleration of the ground motion. By assuming an appropriate spectral shape for the input energy spectrum, and using the well-known Parseval theorem for evaluating the total power of a random signal, the peak amplification factor for the equivalent input energy velocity spectrum can be determined. It is shown that the peak amplification factor for the input energy spectrum depends on the peak-ground-acceleration to peak-ground-velocity ratio and duration of the strong motion phase of the ground motion. Values for the equivalent input energy velocity amplification factor vary from about 2 to 10 for most of the recorded ground motions used in this study. Although a considerable scatter of data is observed in this study, the peak amplification factor predicted by the Fourier amplitude spectrum of the ground acceleration provides a fairly good estimate of the mean value of the peak input energy compared to that determined from inelastic dynamic time history analyses, particularly for systems with high damping and low lateral strength. The peak amplification factor derived in this paper provides a more consistent approach for estimation of seismic demand when compared to an earlier empirical expression used for the formulation of duration-dependent inelastic seismic design spectra, even though only a slight difference in the required lateral strength results from the use of the new formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.