Abstract

Although many previous studies have addressed the accuracy of building energy simulations, very few studies of this subject have mentioned the importance of Heating, Ventilation, and Air-Conditioning (HVAC) thermal zoning strategies to sustainable building design. In addition, the building energy standards and guidelines related to building energy simulation recommend that only a core and perimeter thermal zoning strategy be used to reduce the total number of thermal zones in a model. However, although this simplifies modeling, it can lead to too many thermal zones in the building energy model of a multi-story building, or in some cases too few zones, which can impact the model's accuracy. Therefore, the aim of this study is to develop a new thermal zoning process for building energy simulation called the “grid/cluster method.” that can be applied automatically to whole-building energy simulations of multi-zone commercial structures. To verify this new thermal zoning method, the indoor temperature profiles of grid units were carefully analyzed in a case study simulation. In this study, three thermal zoning simulation models for a rectangular building were created and applied in heating- and cooling-dominant climates. The results show that for both climate conditions, the new grid/cluster method reduced heating/cooling loads by 11%–27% as compared to the single-zone model. In addition, the results significantly improved the simulated indoor comfort conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call