Abstract
The paper proposes a methodology for assessing the seismic soil-foundation-abutment response in the spirit of the sub-structure approach. The methodology is suitable for conventional bridge abutments characterized by massive structural components and accommodates for various structural and soil configurations, from both stratigraphic and topographic perspectives. The abutment is assumed to be rigid, which is a generally acceptable hypothesis given the typical geometry of conventional bridge abutments with walls, orthogonal wingwalls, and a concrete deep or strip foundation. The methodology aligns with codes, which foresees a linear behaviour for the abutments and suggest a low behaviour factor to account for dissipative capabilities due to the backfills and the radiation phenomena in the soil. The soil is assumed to perform elastically, but the overall soil nonlinearity induced by seismic wave propagation can be incorporated into the method using a linear equivalent representation of soil properties. The methodology is applied to a real case study in order to demonstrate its effectiveness in addressing the soil-structure interaction problem and to provide practical suggestions for the method implementation, including possible simplifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.