Abstract
The Purkinje fibers are located in the ventricular walls of the heart, just beneath the endocardium and conduct excitation from the right and left bundle branches to the ventricular myocardium. Recently, anatomists succeeded in photographing the Purkinje fibers of a sheep, which clearly showed the mesh structure of the Purkinje fibers. In this study, we present a technique for modeling the mesh structure of Purkinje fibers semiautomatically using an extended L-system. The L-system is a formal grammar that defines the growth of a fractal structure by generating rules (or rewriting rules) and an initial structure. It was originally formulated to describe the growth of plant cells, and has subsequently been applied for various purposes in computer graphics such as modeling plants, buildings, streets, and ornaments. For our purpose, we extended the growth process of the L-system as follows: 1) each growing branch keeps away from existing branches as much as possible to create a uniform distribution, and 2) when branches collide, we connect the colliding branches to construct a closed mesh structure. We designed a generating rule based on observations of the photograph of Purkinje fibers and manually specified three terminal positions on a three-dimensional (3D) heart model: those of the right bundle branch, the anterior fascicle, and the left posterior fascicle of the left branch. Then, we grew fibers starting from each of the three positions based on the specified generating rule. We achieved to generate 3D models of Purkinje fibers of which physical appearances closely resembled the real photograph. The generation takes a few seconds. Variations of the Purkinje fibers could be constructed easily by modifying the generating rules and parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.